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Summary: Halogen-substituted 2,6-dioxabicyclo{3.3.0]octanes, readily
obtained from 1,4:3,6-dianhydro-D-mannitol may be useful sources of
highly functionalized homochiral synthons. Treated with an alkyllithium
the title compounds undergo dehalogenative (X = I or non-
dehalogenative ring fission (X = C1) giving homochiral 2,5-dihydrofurans
or 2-(1-halogenovinyl)itetrahydrofurans, respectively. The two elimi-
nation processes compete comparably for X = Br.

While the halogen-promoted reactions of pent-4-en-1-01s are well known and frequently
used for the synthesis of functionalized tetrahydrofurans and/or dihydropyrans,] the reverse
transformations, dehalogenative ring fissions, have received only scanty attention.2
Nevertheless these reactions appear to deserve more study for, not only do they represent an
interesting mechanistic challenge, but they also possess high synthetic value, in particular
when applied to halogeno-derivatives of sugars,Zb where they will give rise to highly
functionalized homochiral products.

This communication reports some observations we have made on the ring fission of
bicyclic dihalides obtained from 1,4:3,6-dianhydro-D-mannitol, la-e. The three diiodides were
obtained (83%) as a mixture, la:lb:lc = 6.5:1:5.1 by treatment of the ditosylate of

1,4:3,6-dianhydro-D-mannitol with Nal (DMF, 100 °C, 12 h):3 they were separated by flash

13 4,5 The

chromatography (petroleum ether:Et,0 90:10) and unequivocally assigned by ~C HNMR.

dibromide was similarly prepared (LiBr, acetone, 110°C, 36 h, 85%) as a 13:1 isomer mixture
from which the major isomer was obtained pure by crystallization from hexane and assigned the
structure 1d.4 The dichloride le was prepared according to a published procedure.’’

Upon treatment with an equimolar amount of an alkyllithium in THF at -78°C these
dihalides undergo dehalogenative and/or non-dehalogenative ring fissions, the outcome
depending on the nature of the halogen and, to a lesser extent, on the alkyllithium. Thus
diiodides la and 1b react by the dehalogenative course essentially exclusively giving 2a and,
respectively, 2b along with butyl jodide. The dichloride le on the other hand, reacts largely
by the alternative path giving 3e. For the dibromide 1d the two pathways occur concurrently
the product ratio 2d/3d depending on the nature of the alkyllithium used: in THF 2d/3d = 12

’

and 1.2 with BuLi and Meli, respective]y.7
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1. RLi/R’OR’/-78°

2. aq NH,Cl
X’s,Y’s = H unless specified otherwise R = n-Bu, Me; R'OR’ = THF, Et,0
la: XX =L 1b: Y, Y’ =1 2a: X =1 3a=. X,X’, =1
Ie: X,Y = 1; Ld: X,X’ = Br 2b: Y =1 3b: ¥, X" =1
2d: X = Br 3d: X,X’ =Br
Te: X,X* = C1 2e: X = Cl 3e: X,X* = Cl

It is remarkable that no epoxides are produced in any of the above reactions,9 although they
may be readily obtained by changing the base/solvent system (MeONa/MeOH) after reaction
completion.

The reactions described above are interesting on several accounts: 1. The starting
materials are easily available from sugars. 2. The reaction course may be predetermined by
proper choice of halogen and/or reagent/solvent system . 3. The reaction products are

homochiral synthaons that may be usefully elaborated toward valuable synthetic targets.

To probe the stereochemistry of the dehalogenative ring fission the exo,endo diiodide
1c provided an ideal test since loss of the endo- relative to the exo-iodine measures the
incidence of syn versus anti elimination. Thus the syn/fanti ratioc is simply measured by the
product ratio 2a/2b. The results show the stereocehmical course to be a sensitive function of
the reagent/solvent system (Scheme 1).10 The increase of syn selectivity parallels the
decrease of reaction rate. Remarkably, however, the addition of TMEDA, while strongly
increasing the rate, has no appreciable effect on the stereochemical pathway.

As to the mechanism, the dehalogenative ring fission is a special case of a halogen-metal
exchange where the alkoxy group on CB’ though a poor nucleofuge, is rapidly expelled upon

replacement of the halogen by the electropositive metal. Whether the reaction 15 single step

Scheme 1
H I I

Vo —
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’

RLi/solv., -70° o) . 0

OH

2a 2b

RLi/solv BuLU/THF MeLi/THF BuLiVEt,0 MeLi/Et,0 BuLi/THF* MeLi/Et,0*

#
SYN/ANTI 0.8 1.3 4 14 0.8 15

# Product ratio, 2a/2b, determined by glc (* =TMEDA, 2 eq)
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1 . . .
(E2-halogen) 2 or multistep, by way of an ~ate” comp]ex,]3 or it proceeds via SET, the

evidence above does not provide any definite clue. We are, however, actively applying various

mechanistic probes which will be reported in due course. As to the path leading to 3e or 3d,

this can be reasonably viewed as a base-catalyzed elimination where the acidic proton geminal

to halogen is preferentially abstracted by the alkyllithium base while the CB—O bond is

cleaved. Whether the process may be concerted (E2) or two-step via a carbanion intermediate

(Elch) we have no evidence in favor of either.
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2a: 63%; bp 106-107 °C, 0.3 mm; [al%’ -95.1 (¢, 2.81>; 'H NMR: 5.92 (q,
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2b: 65%; bp 80°C, 0.03 mm (kugelrohr); [ald’ = -117.5 ¢C, 2.33); 'H NMR:
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6.07 (narrow m, 2 H, olefinic H"sY; 5.00 (m, 1 H, C:H); 4.79 and 4.63
(low and high field H of the AB part of an ABX spin system, J's 13.3, 5.6
and 13.3, 3.7, vrespectively, CsHz); 4.10 «m, 1 H, CHIY; 3.94 «(d,
J = 5.7, 2 H, CHa0H); 3.4 (brs, 1 H, OH). "¢ NMR: 129.0, 128.6 (d°s,
Cs, Cs, interchangeable?y; 89.1 (d, C;y); 76.4 (t, CH,OH); 66.9 (t, Cs5);
39.1 (CHIM.

2d: 64% (from the BuLi reaction): bp 50°C, 0.01 mm (kugelrohr): [al}
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s, 1 H, OH). 13¢ NMR: 129.0, 126.5 (d‘s, C3 and C, interchangeable); 85.9
(d, Cz); 76.6 (t, CH0H): 64.4 (t, Cs5): 58.5 (d, CHBr).
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(m, 1 H, C4HY; 4.35 (m, 1 H, CaH); 4.25 (dd, J’s = 10.5 and 1.2 Hz, 1 H,
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